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ABSTRACT

A well-known property of solar wind plasma turbulence is the observed anisotropy of the autocor-1

relations, or equivalently the spectra, of velocity and magnetic field fluctuations. Here we explore the2

related but apparently not well-studied issue of the anisotropy of plasma density fluctuations in the3

energy-containing and inertial ranges of solar wind turbulence. Using 10 years (1998-2008) of in situ4

data from the Advanced Composition Explorer (ACE) mission, we find that the density correlation5

scale is slightly larger in directions quasi-parallel to the large-scale mean magnetic field as compared to6

quasi-perpendicular directions. The effect is present in both fast and slow winds. The anisotropy as a7

function of the level of correlation is also explored. We find at small correlation levels, i.e., at energy-8

containing scales and larger, the density fluctuations are close to isotropy, but in fact slightly favor9

more rapid decorrelation in perpendicular directions. At relatively smaller turbulence inertial range10

scales where the correlation values are larger, the sense of anisotropy is reversed in all speed ranges,11

implying a more “slab-like” structure, especially prominent in the fast wind samples. We contrast this12

finding with published results on velocity and magnetic field correlations.13

1. INTRODUCTION

There are two well-known reasons for turbu-

lent fluctuations in the solar wind to exhibit de-

partures from statistical isotropy (Batchelor 1970;

Oughton et al. 2015). The first is solar wind ex-

pansion, which in the simplest terms imposes the

radial coordinate as a preferred direction. This

is expected to influence mainly those structures

larger than the turbulence correlation scales. For

smaller-scale structures, including the inertial and

kinetic ranges, the second influence - that of the

local large-scale magnetic field - is expected to ex-
ert a dominant influence. Indeed, it is well estab-

lished that in the inertial range of magnetohydro-

dynamic (MHD) turbulence, the correlation func-

tions (or equivalently, the spectra) of magnetic

field and velocity fluctuations exhibit anisotropy

relative to the magnetic field direction (Matthaeus

et al. 1990, 1996; Chen et al. 2012; Shaikh &

Zank 2010; Oughton et al. 2015). The symmetries

that may be associated with this anisotropy may

be referred to as rotational symmetries, such as

axisymmetric “slab” or “2D” geometries (Bieber
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et al. 1996). The analogous issue of anisotropy of

density fluctuations has received some attention,

reviewed below, in the theoretical and numeri-

cal simulation literature (Matthaeus et al. 1996;

Cho & Lazarian 2002; Chandran & Backer 2002;

Zank et al. 2012) as well as in remote sensing ob-

servations (Coles & Harmon 1989). However, to

our knowledge, the issue of correlation or spec-

tral anisotropy of the density fluctuation field in

the energy-containing and inertial ranges of tur-

bulence has not been fully examined in solar wind

in situ observations. Here we take a step in that

direction by examining density correlation statis-

tics, their variation relative to the mean magnetic

field and their variation with scale. (Mean values

and other statistics are computed over samples of

at least a correlation scale, in accord with classi-

cal ergodic theory; see e.g., Panchev (1971).) As

in the usual picture of turbulence, scales can be

categorized as the energy-containing, inertial, and

dissipation regimes. Here, we focus on the former

two, which are roughly separated by the correla-

tion scale (Frisch 1995). Our study emphasizes

observations near 1 au, where long-term datasets

provide the possibility of high statistical weight

analyses.

Coronal and solar wind density fluctuations

can be studied based on remote sensing tech-

niques, such as analysis of scintillation of sig-

nals from distant radio sources (Coles & Harmon

1989; Armstrong et al. 1990; Kellogg & Horbury

2005; Kontar et al. 2023). Rotational symmetry

is frequently extracted from these measurements.

Many of these studies are designed to detect coro-

nal density properties, while a few have been car-

ried out near 1 au. The seminal work of Celnikier

et al. (1987) describes the limitations and sensitiv-

ities of this class of scintillation studies. A typical

conclusion is that structures in the coronal density

fluctuation field are preferentially elongated in the

direction of the inferred mean magnetic field. This

implies that density gradients are stronger in di-

rections perpendicular to the magnetic field. This

sense of correlation anisotropy is familiar in solar

wind measurements of velocity and magnetic field

(Matthaeus et al. 1990; Bieber et al. 1996; Hamil-

ton et al. 2008; Narita et al. 2010; Chen et al. 2011;

Horbury et al. 2012; Oughton et al. 2015).

Interplanetary density spectra have also been

examined based on in situ observations (see, e.g.

Bellamy et al. 2005). But the directional de-

pendence of density fluctuation statistics in the

inertial and energy-containing ranges of scales

have sometimes been overlooked, even in relatively

complete characterizations of turbulence correla-

tions (Borovsky 2012). When density fluctuations

have been considered, the emphasis has often been

on high frequency or sub-ion scales (Celnikier et al.

1987; Malaspina et al. 2010; Chen et al. 2011; Kon-

tar et al. 2023) where kinetic plasma properties are

probed. However, we are not aware that a compre-

hensive survey has been carried out to describe the

anisotropy of MHD-scale inertial-range correlation

of the plasma density. This motivates our cur-

rent focus on the anisotropy of energy-containing

range and inertial range density fluctuations near

Earth’s orbit.

This paper is organized as follows: in Section

2 we discuss the “Maltese cross” representation of

correlation anisotropy, which serves as the theo-

retical basis prompting this research. In Section 3

we describe our data and analysis procedure. Sec-

tion 4 presents our results on the scale-dependent

density correlation anisotropy, and Section 5 dis-

cusses the implications of the results.

2. SIMPLIFIED REPRESENTATIONS OF

ANISOTROPY

A point of reference that motivates the present

study is the “Maltese cross” autocorrelation pat-

tern (Matthaeus et al. 1990) derived from the in-

terplanetary magnetic field (IMF) at 1 au. The

pattern is assumed to be axisymmetric about the

mean magnetic field B0 and consists of a lobe that

admits gradients mainly in the direction parallel

to B0 and another part that varies mainly in the
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directions perpendicular to B0. In an idealized

sense, the former are known as “slab” fluctua-

tions, and the latter, “2D” fluctuations. This so

called two-component model has become a useful

parameterization for anisotropy that incorporates

both Alfvén wave-like spectral components and

a quasi-two-dimensional (2D or Q2D) ingredient

that varies, at most, weakly along a mean field

(Bieber et al. 1994, 1996). The two-component

parameterization allows for arbitrary admixtures

of energy in models that vary mainly along or

transverse to the mean field, and as such has be-

come a convenient and often-invoked model for use

in theoretical work on charged particle scattering

(Shalchi 2009). It is also incorporated with several

variations into turbulence transport models that

describe turbulence throughout the heliosphere as

well as models for solar wind acceleration and evo-

lution in the presence of turbulence (e.g., Adhikari

et al. 2017; Usmanov et al. 2018). The anisotropy

present in such models exerts a strong influence

on the results of such calculations and modeling

of turbulence. It is essential to bear in mind that

such parameterization of anisotropy are crude rep-

resentations, and are not intended as dynamical

turbulence models. However, they demonstrate

the physical significance and impact of correlation

or spectral anisotropy.

Another approach to describing spectral

anisotropy is based on wave theory, with the

premise being that linear MHD wave modes may

be separated unambiguously based on their po-

larization properties (Cho & Lazarian 2002; Cho

et al. 2002). (The standard decomposition has

been controversial for some time and recently a

more complete approximate representation that

includes structures as well as waves has been sug-

gested by Zank et al. (2023).) This wave de-

composition idea can be directly carried over to

turbulence in the weak turbulence regime. In

that case, the adopted basis and leading-order dy-

namical solutions are constructed from the linear

modes themselves (Chandran 2005). In this view,

the Alfvén mode is anisotropic, a well-established

property in strong MHD turbulence (Shebalin

et al. 1983; Oughton et al. 1994). In addition,

the Alfvén mode is polarized transverse to the

mean magnetic field, a small-amplitude property

adopted in critical balance theory by Goldreich &

Sridhar (1995) (see also Oughton & Matthaeus

2020). The slow mode is assumed to follow a pas-

sive dynamics, and to admit an anisotropy simi-

lar to the incompressible Alfvén mode. The de-

composition into wave modes is completed by ex-

tracting fluctuations with the polarization of lin-

ear fast modes. These remain isotropic, as the fast

mode dispersion does not depend on direction. It

is widely regarded that useful results have been

attained based on a linear-wave decomposition.

However, it should be disparaged as a general rep-

resentation of MHD turbulence, as it has been

shown to be essentially incomplete (Zank et al.

2023); in particular it lacks coherent structures

and nonpropagating structures that are nonethe-

less found to be dynamically important (Gan et al.

2022).

The linear wave theory underlies a popular

surrogate for compressional effects, the so-called

magnetic compressibility, that has been exten-

sively employed in observational solar wind stud-

ies (Bruno & Carbone 2013; Chen et al. 2012).

This surrogate assumes that the relative strength

of the component of the magnetic variance paral-

lel to the ambient (mean) magnetic field is a mea-

sure of compressional dynamical activity. This as-

sumption breaks down for large-amplitude turbu-

lence, wherein parallel fluctuations need not be

identified with compressional fast magnetosonic

modes. Such fluctuations could have a more gen-

eral character, such as an indication of spheri-

cal polarization of large-amplitude Alfvénic fluc-

tuations (Barnes & Hollweg 1974; Barnes 1981),

which are usually not associated with density vari-

ations.

In the following, we will not make explicit use

of representations based on mode decomposition,

but rather will incorporate the underlying ideas
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Table 1. ACE 24-hour dataset count in each wind
speed and angular channel. The angle θ is defined in
Eq. 1

≤ 400 km/s 400-500 km/s ≥ 500 km/s

0◦-40◦ 68 89 56

40◦-45◦ 95 130 124

45◦-50◦ 214 343 348

50◦-55◦ 370 541 620

55◦-60◦ 469 672 524

60◦-70◦ 754 714 331

70◦-90◦ 196 132 50

Total 2166 2621 2053

into our physical discussion of the anisotropy of

solar wind density fluctuations.

3. DATA AND ANALYSIS PROCEDURE

We acquire 10 years (from February 1998 to

March 2008) of ion number density data observed

by the SWEPAM instrument on the Advanced

Composition Explorer (ACE) spacecraft (McCo-

mas et al. 1998), along with corresponding so-

lar wind speed measurements from SWEPAM and

magnetic field measurements from the MAG in-

strument (Smith et al. 1998) on ACE. This dataset

covers most of a solar activity cycle, with maxi-

mum sunspot number occurring in 2003 (e.g., Bal-

maceda et al. 2009). The original data at 64-

second resolution is upsampled to a 1-minute ca-

dence and separated into datasets that span one

day. Overlapping midnight-to-midnight and noon-

to-noon intervals are included to increase the total

number of datasets and suppress systematic day-

timescale periodicities. A density interval is dis-

carded if over 70% of the observations are empty.

In the retained intervals, any missing data is ex-

cluded from our computations. We then detrend

each dataset using a linear fit, resulting in zero-

mean data samples.

We group the data intervals based on their

mean solar wind speed VSW and the angle between

their mean magnetic field and the heliocentric ra-

dial direction:

θ = cos−1

(
B0 · r
|B0||r|

)
(1)

where r is a vector in the radial direction and B0

is the mean magnetic field vector for a dataset. As

the wind velocity is assumed to be radial, θ essen-

tially represents the angle between the spacecraft

sampling direction and the mean magnetic field.

The θ channels are 0−40, 40−45, 45−50, 50−55,

55−60, 60−70, and 70−90 degrees, and the VSW

channels are 0 − 400, 400 − 500, and 500 − 1000

km/s for slow, medium, and fast winds, respec-

tively. The channels are chosen to ensure a suffi-

cient number of datasets in each group, as shown

in Table 1 (also see the Appendix for a distribution

of the solar wind speeds).

To proceed with our analysis, we compute the

density autocorrelation function for each dataset

using the Blackman-Tukey method (Blackman &

Tukey 1958) (as described in detail in Roy et al.

(2021)). The ensemble definition of the autocor-

relation is

R(τ) = ⟨ρ(t)ρ(t+ τ)⟩ − ⟨ρ(t)⟩⟨ρ(t+ τ)⟩ (2)

where ρ is the ion density, τ is the time lag. Invok-

ing the ergodic theorem, the brackets ⟨· · ·⟩ corre-
spond formally to averaging over an infinite sam-

ple size. For finite data consisting of N equally

spaced samples, we denote the averaging opera-

tion as ⟨· · ·⟩′. Specifically, for a dataset {ρi} =

ρ0, · · · , ρN−1 with sampling time ∆t = 60 seconds,

τ takes integer multiples of ∆t, and the averaging

can be written explicitly as

⟨ρ(t)⟩′ = ⟨ρj⟩j=0,···,N−τ/∆t−1, (3)

⟨ρ(t+ τ)⟩′ = ⟨ρj⟩j=τ/∆t,···,N−1, (4)

⟨ρ(t)ρ(t+τ)⟩′ = ⟨ρjρj+τ/∆t⟩j=0,···,N−τ/∆t−1. (5)

For the remainder of the paper, for clarity, we drop

the prime in the bracket notation.

For stationary data, R(τ) does not depend

on the variable t, i.e. the origin of time. And
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therefore by definition, the correlation function

is an even function of lag τ . Under appropri-

ate conditions, this is equivalent to the Reynolds

averaging expression for the correlation function,

R(τ) = ⟨δρ(t)δρ(t+τ)⟩, where δρ(t) ≡ ρ(t)−⟨ρ(t)⟩
(see Germano 1992).

When we consider the normalized correlation

function R̂, the R(τ) resulting from Eq. 2 is nor-

malized by the data variance R(0):

R̂(τ) =
R(τ)

R(0)
. (6)

To eliminate undersampled fluctuations at

large lags, we pass each autocorrelation function

through a 10% cosine taper window (Matthaeus

& Goldstein 1982), where the last 10% of R̂(τ)

values are multiplied by the factor

1

2

(
1 + cos

[
π

0.1τmax
(τ − 0.9τmax)

])
(7)

with τmax representing the maximum lag over

which the autocorrelation is calculated. In this

analysis the maximum lag is 4.8 hours; this cor-

responds to 1/5 of the data interval, and several

times the anticipated correlation times.

We further transform the temporal lags τ into

spatial lags λ by applying the Taylor frozen-in hy-

pothesis (Taylor 1938), λ = −VSWτ , where VSW

is the solar wind speed in the upstream direc-

tion averaged over the data interval. With this

procedure, we arrive at a normalized, spatial lag-

dependent correlation function R̂(λ).

4. RESULTS

We first examine distributions of the standard

deviations (S.D.; a measure of the fluctuation am-

plitude) of the density samples. The S.D. values

range from 0.6 to 3.4 cm−3 across the 24-hour

datasets, and increase with θ and decrease with

VSW. We plot in Fig. 1 the average sample S.D.

with respect to θ and VSW, with error bars repre-

senting standard errors. These plots indicate that

Figure 1. The density standard deviation averaged
over each θ channel (top panel) and each VSW channel
(bottom panel). Error bars represent standard errors.
Here δρ(t) ≡ ρ(t) − ⟨ρ(t)⟩, where ⟨· · ·⟩ refers to an
average over an individual 24-hr dataset, and “mean”
refers to averaging the standard deviations over all 24-
hour datasets that lie within a θ or VSW channel.

density fluctuations are stronger when the space-

craft samples flow perpendicular to, rather than

parallel to, the mean magnetic field, and that slow

wind exhibits larger density fluctuations compared

to fast wind. (It is well-known that slow wind
is denser than fast wind (McComas et al. 2000;

Usmanov et al. 2018).) The top panel of Fig. 1

is consistent with the recent work of Du et al.

(2023), on the anisotropy of density fluctuations

obtained from simulations of compressible MHD

turbulence.

We proceed to our investigation of the cor-

relation anisotropy. The normalized autocorre-

lation functions are averaged within each group
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Figure 2. The normalized correlations for slow (top
panel), medium (middle panel), and fast (bottom
panel) winds as functions of spatial lag. The correla-
tions have been averaged within each angular channel,
denoted by distinctly colored lines. Dashed horizontal
lines indicate where R̂ = 1/e and 1/2e.

of speed and angular channel, resulting in 21 in-

stances of autocorrelations henceforth represented

by R̂(λ = −VSWτ). These are shown in the pan-

els of Fig. 2. Separate panels correspond to slow,

medium, and fast winds, and within each, angular

variations are demonstrated.

The correlation length λc, defined as the spa-

tial lag where the correlation decreases by a factor

of 1/e, is listed in Table 2 for each channel. The

uncertainties are standard errors calculated from

the ensemble of intervals within each channel. We

further plot λc over θ for all three wind channels

Table 2. Correlation length from the 1/e method
and the length where correlation decreases by 1/2e (in
parentheses) in units of 106 km in each wind speed and
angular channel. The uncertainties represent standard
errors.

≤ 400 km/s 400-500 km/s ≥ 500 km/s

0◦-40◦
1.73± .16 2.08± .13 2.40± .24

(2.95± .18) (3.36± .16) (4.43± .32)

40◦-45◦
1.45± .13 1.95± .11 2.33± .16

(2.60± .15) (3.33± .14) (4.41± .19)

45◦-50◦
1.60± .09 1.83± .07 2.30± .10

(2.75± .09) (3.23± .09) (4.31± .12)

50◦-55◦
1.53± .07 1.80± .06 2.33± .07

(2.63± .08) (3.21± .07) (4.33± .09)

55◦-60◦
1.48± .06 1.78± .05 2.08± .07

(2.53± .07) (3.18± .06) (3.91± .09)

60◦-70◦
1.53± .05 1.83± .05 2.30± .09

(2.58± .05) (3.18± .06) (4.13± .12)

70◦-90◦
1.43± .08 1.73± .09 2.33± .20

(2.43± .10) (2.85± .12) (3.78± .28)

Average
1.53± .26 1.86± .22 2.30± .39

(2.64± .29) (3.19± .28) (4.19± .51)

in the top panel of Fig. 3, and fit each set of data

with a linear curve using least squares analysis.

In all wind channels, we find a subtle trend that

the correlation length decreases as θ increases -

the slopes of slow and medium winds are nega-

tive with a 2σ confidence, while the trend is less

pronounced for fast wind, as shown in the legend

of Fig. 3. This indicates that the longest aver-

age correlation lengths occur in the angular chan-

nel with the mean magnetic field direction quasi-

aligned with the particle flow direction.

We also list, in parentheses in Table 2, the spa-

tial lag where the correlation decreases by a fac-

tor of 1/2e, denoted as λ1/2e. The correspond-

ing plot is shown in the bottom panel of Fig. 3.

We find that λ1/2e decreases more noticeably as

θ increases, suggesting that the observed corre-

lation persists to larger distances in the paral-

lel directions. Equivalently, the gradients at the
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Figure 3. The correlation length λc (top panel) and
the length λ1/2e where the correlation decreases by a
factor of 1/2e (bottom panel) as functions of angular
channel for slow, medium, and fast winds. The data
and uncertainties are consistent with those listed in
Table 2. Dashed lines show linear best fits with corre-
sponding slopes listed in the legends.

outer scale of turbulence are moderately stronger

in the perpendicular directions. Additionally, we

observe that the correlation lengths are systemat-

ically longer in fast wind compared to slow wind.

This latter difference appears to be clearer in den-

sity correlations compared with magnetic correla-

tions (Weygand et al. 2011).

To better visualize the density correlation

anisotropy for slow, medium, and fast winds, in

Fig. 4 we plot the contour levels of the averaged

autocorrelations R̂(λ) in perpendicular and paral-

lel lag spaces through the transformation (λ⊥ =

λ sin θ, λ∥ = λ cos θ), following Dasso et al. (2005).

The contours are computed in the first quadrant,

then mirrored about the θ = 0◦ and 90◦ axes un-

der symmetry assumptions. This is a statistical

demonstration of the Maltese cross geometry in

density fluctuation fields.

It is evident that the outermost contours of

constant correlation in Fig. 4, those with the

smallest correlation values, are slightly elongated

in the parallel direction for all three classes of wind

speed. The effect is actually rather subtle for all

wind channels. These contours of very low corre-

lation values (the largest “circles”) may be charac-

terized as weakly “2D-like” in the sense described

in Dasso et al. (2005). However, the higher cor-

relation contours (the smaller circles) tend to ex-

hibit the opposite type of anisotropy that may be

described as “slab-like”. Specifically, the R̂ = 0.5

contour for fast wind is somewhat “slab-like” with

elongation in the perpendicular direction, and this

tendency becomes more pronounced at the high-

est correlation values, as depicted in the bottom

panel of Fig. 4. Meanwhile, the R̂ = 0.5 contours

for slow and intermediate winds remain slightly

2D-like, even though they also become slab-like at

the highest correlation values. This general ten-

dency of the correlation contours and its depen-

dence on wind speed is qualitatively consistent

with the result from Dasso et al. (2005) for the

magnetic field correlations, a comparison that we

discuss in greater detail later.

The general increase in correlation lengths

with increasing wind speed is also readily appar-

ent in Fig. 4, where isocontours “expand” from the

top to the bottom panel.

The above description of density anisotropies

is quantified in Table 3. Here, we list the values for

λ⊥, λ∥, and λ⊥/λ∥ in all three wind channels cor-

responding the following normalized correlations:

R̂ = 0.9, 0.7, 0.5, 1/e, 0.3, 1/2e, and 0.1. Scales

larger than the correlation scale are considered

the energy-containing scale, while smaller scales

belong to the inertial range. The lags are calcu-
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Figure 4. The correlation contours for slow (top
panel), medium (medium panel), and fast (bottom
panel) winds, calculated from Fig. 2 through the trans-
formation (λ⊥ = λ sin θ, λ∥ = λ cos θ).

Table 3. Estimates of λ⊥ and λ∥ in units of 106

km as well as their ratio on the correlation contours
R̂(λ) = 0.9, 0.7, 0.5, 1/e, 0.3, 1/2e, and 0.1 for slow,
medium, and fast winds.

R̂ λ⊥ λ∥ λ⊥/λ∥

≤ 400 km/s

0.9 0.05 0.03 1.78

0.7 0.34 0.30 1.14

0.5 0.89 0.98 0.90

1/e 1.39 1.61 0.86

0.3 1.70 2.03 0.84

1/2e 2.37 2.77 0.85

0.1 2.97 3.37 0.88

400-500 km/s

0.9 0.07 0.04 1.54

0.7 0.44 0.42 1.05

0.5 1.08 1.19 0.90

1/e 1.68 1.93 0.87

0.3 2.06 2.35 0.88

1/2e 2.79 3.14 0.89

0.1 3.52 3.88 0.91

≥ 500 km/s

0.9 0.13 0.04 3.31

0.7 0.61 0.36 1.71

0.5 1.48 1.28 1.16

1/e 2.28 2.26 1.01

0.3 2.70 2.87 0.94

1/2e 3.71 4.16 0.89

0.1 4.54 5.37 0.85

lated from Fig. 2 using λ⊥ = λ(R̂70◦−90◦) sin 80
◦

and λ∥ = λ(R̂0◦−40◦) cos 20
◦, or can be directly

observed in Fig. 4. Note that due to the coarse

binning at low θ, λ∥ may be underestimated and

λ⊥/λ∥ may be overestimated. Fig. 5 shows how

λ⊥/λ∥ varies with R̂. We again observe that the

correlations are slightly elongated along the paral-

lel direction at small R̂ (large spatial lags), while

for small spatial lags (large R̂), corresponding to

the inertial range, the correlations are elongated

in the perpendicular direction.

5. DISCUSSION
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Figure 5. Estimates of λ⊥/λ∥ as functions of R̂(λ)
for slow, medium, and fast winds. Dotted vertical lines
indicate the 1/e and 1/2e correlation levels. Dashed
horizontal line indicates where λ⊥/λ∥ = 1.

There is a general tendency for MHD, and

plasma turbulence in the MHD range of scales as

well, to exhibit correlation anisotropy, and equiv-

alently, spectral anisotropy relative to the direc-

tion of a regional mean magnetic field of suf-

ficient strength (Shebalin et al. 1983; Oughton

et al. 1994). Other effects may also introduce

anisotropies by imposing preferred directions that

influence regional and local dynamics. For ex-

ample, in a structured and expanding medium

such as the solar wind, large-scale plasma flows

may introduce preferred directions that influence

anisotropy. A notable effect is that of expansion,

which, in the simplest case, selects the radial direc-

tion as preferred. Other relevant effects include re-

gions of shear and compression occurring between

high- and low-speed streams and near shocks, as

well as interactions involving structures such as

coronal mass ejections. One may expect that these

various influences on anisotropy may operate at

different length scales, and may have varying lev-

els of influence on different physical quantities.

For mostly practical reasons, solar wind studies

on turbulence anisotropy have often concentrated

on the magnetic field. The present report extends

this discussion to include the fluctuations in den-

sity.

More specifically, most previous examinations

of anisotropy have considered the relatively local

effects of the magnetic field direction on the rota-

tional symmetry of magnetic fluctuations (Bieber

et al. 1994, 1996). Based on results from labo-

ratory experiments (Robinson & Rusbridge 1971)

and numerical simulations (Shebalin et al. 1983;

Oughton et al. 1994), the expectation is that

MHD-scale turbulence will display a quasi-2D

anisotropy relative to the field direction. This

expectation, mainly based on theoretical exami-

nations of incompressive dynamics, is reasonably

well-confirmed in most analyses of solar wind ro-

tational symmetry (Bieber et al. 1994, 1996). An

exception is the study of Saur & Bieber (1999),

which finds some support for a preferred role of

the radial direction at relatively lower frequencies.

The later finding suggests the influence of expan-

sion, an effect clearly seen in WKB treatments

(e.g. Völk & Aplers 1973).

Considering a broader context, the dynamics

in the solar wind at 1 au may consist of an admix-

ture of incompressive and compressive parts. In

this more realistic portrayal, more complex influ-

ences on rotational symmetry may be anticipated.

In particular, the incompressive tendency towards

a quasi-2D configuration merges with the rela-

tively isotropic spectral (and correlation) statistics

attributed to the compressible dynamics. Indeed,

compressible MHD simulations (Matthaeus et al.

1996; Du et al. 2023) with Mach number, plasma
β, and δB/B similar to those of the solar wind

indicate that density spectra are anisotropic, but

less so than the anisotropy seen in incompressible

simulations (Oughton et al. 1994). This appears

to be consistent with the current findings, wherein

the correlation lengths parallel and perpendicular

to the mean magnetic field differ from one another

by only a small relative fraction. The present find-

ing also suggests a more complex scenario in which

the sense of anisotropy varies across scales.
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It has been previously suggested (Dasso et al.

2005; Weygand et al. 2011) that for the magnetic

field in the solar wind, the parallel correlation scale

is larger than the perpendicular correlation scale

by a factor of around 2 for the slow solar wind.

This is a modest 2D-like anisotropy compared to

what is expected at smaller scales in the inertial

range. However, such a ratio is considerably larger

than that of the density correlation scales reported

here.

Here, for density fluctuations, the sense of

anisotropy at the correlation scale, whether mea-

sured at the 1/e or the 1/2e level, is mainly of the

“2D” type. (The fast wind is essentially isotropic

at the 1/e scale but becomes 2D at larger scales.)

We suggest that the weaker outer-scale anisotropy

of the density is due to the effects of the admix-

ture of more anisotropic incompressive turbulence

with less anisotropic compressible turbulence, con-

sistent with previous numerical results (see, e.g.,

Fig. 5 of Matthaeus et al. 1996).

It is interesting, perhaps a bit surprising and

of potential significance, that at smaller scales

(higher correlation values), the sense of density

anisotropy reverses and favors slab-like symme-

tries. This trend occurs in all wind speed channels

and is especially dramatic for fast wind. This is

reminiscent of the sense of magnetic anisotropy

at correlation scales in fast wind (Dasso et al.

2005). Furthermore, by inspection of the mag-

netic correlation contours in Dasso et al. (2005),

it appears that slab-like symmetry occurs across

a wide range of scales in fast wind. This however

was not quantified. But for slow wind, the 2D-

like sense of magnetic anisotropy mentioned above

as present at the correlation scale remains (as

seen by inspection) 2D-like over a reasonably wide

range of scales. Furthermore, in the above-quoted

compressible MHD simulation results (Matthaeus

et al. 1996), the inertial range contours of density

spectra appear to be of the 2D type, although not

dramatically so. Finally, we note that our finding

of slab-like density in the fast wind inertial range

also seems to contradict Fig. 5 and 6 of Chen

et al. (2012), who use Ulysses data and adopt |B|
as a proxy for compressive fluctuations. A major

difference, however, is that the analysis of Chen

et al. (2012) is carried out in a coordinate system

based on a local definition of the mean field. Such

a procedure systematically increases the ratio of

perpendicular to parallel structure functions, thus

favoring 2D-like interpretations (Matthaeus et al.

2012). Our computation of mean fields integrated

over longer times is chosen to avoid this bias.

We cannot rule out the appearance of field

aligned (2D-like) anisotropies at much smaller

scales, possibly for all wind speeds. Indeed, these

are favored by coronal observations such as Arm-

strong et al. (1990). The study found field-aligned

elongated structures having anisotropy ratios that

increase with increasing heliocentric distance from

2 to about 10 solar radii. However, these observa-

tions were at much smaller scales, and much closer

to the sun, relative to the present large-scale ob-

servations at 1 au. Nevertheless, these authors did

suggest that solar wind density anisotropy varies

with scale.

The present results for the anisotropy of den-

sity stand in substantial contrast to expectations

based on magnetic and velocity field spectra in

incompressible simulations and in solar wind ob-

servations. The basis of this expectation is that

the incompressible cascade, which presumably is

a major factor in the solar wind dynamics, is

well known to favor 2D-like anisotropies (Oughton

et al. 2015). The reasons for this departure remain
unclear at present, but most likely pertain to the

way compressible fluctuations are generated in the

solar wind. Further research will be required to

arrive at a clearer understanding.

Future observations from the PUNCH mission

(Deforest et al. 2022) will provide us with solar

wind density data in regions of the inner helio-

sphere yet unexplored and with an unprecedented

field of view. As observed in DeForest et al.

(2016), the solar wind shows a transition from
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“striated” to “flocculated” features, suggesting

an evolution toward isotropization (Cuesta et al.

2022). Using the white-light images obtained from

PUNCH, it will be possible to recover unprece-

dented mapping of solar wind density. Such mea-

surements will be used to perform analyses similar

to those presented in this paper, that will provide

invaluable knowledge about the radial evolution of

solar wind anisotropy.

The velocity and density data were down-

loaded from https://spdf.gsfc.nasa.gov/pub/

data/ace/swepam/level2 hdf/ions 64sec. This re-

search is partially supported by the NASA LWS

grant 80NSSC20K0377 (subcontract 655-001),

and by the NASA IMAP project at UD under

subcontract SUB0000317 from Princeton Uni-

versity. R.C. and M.E.C. acknowledge LANL’s

hospitality during Summer 2022, when part of

this work was performed.
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APPENDIX

The separation of data intervals into three wind speed classes is a central part of this analysis. To

ensure a reasonable level of statistical validity in each class, we base the partitioning by speed on an

understanding of its probability distribution, as shown in Fig. 6. The boundaries for slow, medium, and

fast wind channels are represented by dotted vertical lines to show an almost equal number of counts in

each channel.

Figure 6. Shaded histogram shows the distribution of solar wind speeds. Dotted vertical lines represent the
boundaries of the solar wind speed channels. Solid curve shows the best-fit lognormal distribution. Dashed curve
shows the lognormal distribution derived from the arithmetic mean and variance of the wind speed samples.
Parameters of both lognormal distributions are listed in the legend.
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